

Innovative Service Around the Globe

YAGEO

DATA SHEET

AUTOMOTIVE GRADE HIGH VOLTAGE

CHIP RESISTORS (LEAD FREE)

RV_P series

0.5%, 1%, 5%

sizes 0603/0805/1206/2010/2512

IEC 62368-1 Safety Certificate issued by UL Demko:
sizes 0603/0805/1206

YAGEO

Product specification – February 20, 2025 V.1

SCOPE

This specification describes RV0603/0805/1206/2010/2512 high voltage chip resistors made by thick film process.

APPLICATIONS

- Total lead free without RoHS exemption
- Converter
- Printer equipment
- Battery charger
- Computer
- Power supply
- Car electronics

FEATURES

- AEC-Q200 qualified
- Reducing environmentally hazardous wastes
- High component and equipment reliability
- Non-forbidden materials used in products/production
- Halogen Free Epoxy
- Moisture sensitivity level: MSL 1
- IEC 62368-1: 2018 safety certificate issued by UL Demko for the following sizes and resistance ranges:
 - 0603: 100KΩ to 12MΩ
 - 0805: 100KΩ to 24MΩ
 - 1206: 100KΩ to 27MΩ

* Please refer to UL certification

* Waiting for establishing

ORDERING INFORMATION - GLOBAL PART NUMBER

Both part numbers are identified by the series, size, tolerance, packing type, temperature coefficient, taping reel and resistance value.

YAGEO BRAND ordering code**GLOBAL PART NUMBER (PREFERRED)**

RV XXXX X X X XX XXXX P

(1) (2) (3) (4) (5) (6) (7)

(1) SIZE

0603/0805/1206/2010/2512

(2) TOLERANCE

D = ±0.5%

F = ±1%

J = ±5%

(3) PACKAGING TYPE

R = Paper/PE taping reel

K = Embossed taping reel

(4) TEMPERATURE COEFFICIENT OF RESISTANCE

– = Base on spec

(5) TAPING REEL

07 = 7 inch dia. Reel

(6) RESISTANCE VALUE

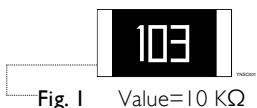
There are 2~4 digits indicated the resistor value. Letter R/K/M is decimal point, no need to mention the last zero after R/K/M, e.g.1K2, not 1K20.

Detailed resistance rules show in table of "Resistance rule of global part number".

(7) DEFAULT CODE

Letter P is lead free (without RoHS exemption)

Resistance rule of global part number


Resistance code rule	Example
XXXXX (10 to 97.6 KΩ)	10K = 10,000 Ω 97K6 = 97,600 Ω
XXXK (100 to 976 KΩ)	100K = 100,000Ω 976K = 976,000Ω
XMXX (1 to 9.76 MΩ)	1M = 1,000,000 Ω 9M76 = 9,760,000 Ω
XXMX (10 to 16 MΩ)	10M = 10,000,000 Ω 27M = 27,000,000 Ω

ORDERING EXAMPLE

The ordering code of a RV1206 chip resistor, value 1 MΩ with ±5% tolerance, supplied in 7-inch tape reel is: RV1206JR-071MP.

MARKING

RV0603/0805/1206/2010/2512

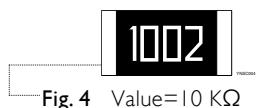
E-24 series: 3 digits, $\pm 5\%$


First two digits for significant figure and 3rd digit for number of zeros

RV0603

E-24 series: 3 digits, $\pm 0.5\%$ & $\pm 1\%$

Exception values 10/11/13/15/20/75 of E24 series


One short bar under marking letter

E-96 series: 3 digits, $\pm 0.5\%$ & $\pm 1\%$

Including values 10/11/13/15/20/75 of E24 series

First two digits for E-96 marking rule and 3rd letter for number of zeros

RV0805/1206/2010/2512

Both E-24 and E-96 series: 4 digits, $\pm 0.5\%$ & $\pm 1\%$

First three digits for significant figure and 4th digit for number of zeros

For further marking information, please refer to data sheet "Chip resistors marking".

CONSTRUCTION

The resistor is constructed on top of a high-grade ceramic body. Internal metal electrodes are added on each end to make the contacts to the thick film resistive element. The composition of the resistive element is a noble metal imbedded into a glass and covered by a second glass to prevent environment influences. The resistor is laser trimmed to the rated resistance value. The resistor is covered with a protective epoxy coat, finally the two external terminations (matte tin on Ni-barrier) are added. See fig.5

DIMENSIONS

Table I For outlines see fig. 5

TYPE	L (mm)	W (mm)	H (mm)	I ₁ (mm)	I ₂ (mm)
RV0603	1.60 ± 0.10	0.80 ± 0.10	0.45 ± 0.10	0.25 ± 0.15	0.25 ± 0.15
RV0805	2.00 ± 0.10	1.25 ± 0.10	0.50 ± 0.10	0.35 ± 0.20	0.35 ± 0.20
RV1206	3.10 ± 0.10	1.60 ± 0.10	0.55 ± 0.10	0.45 ± 0.20	0.45 ± 0.20
RV2010	5.00 ± 0.10	2.50 ± 0.15	0.55 ± 0.10	0.55 ± 0.15	0.55 ± 0.20
RV2512	6.35 ± 0.10	3.10 ± 0.15	0.55 ± 0.10	0.60 ± 0.20	0.60 ± 0.20

OUTLINES

For dimension see Table I

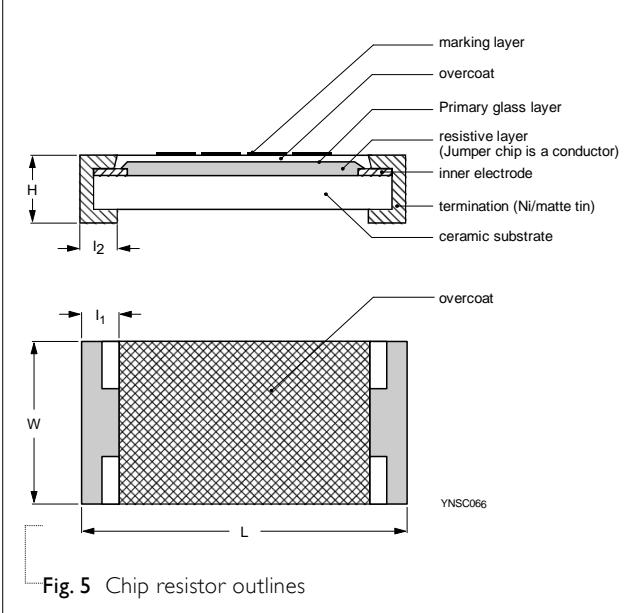


Fig. 5 Chip resistor outlines

ELECTRICAL CHARACTERISTICS

Table 2

TYPE	RESISTANCE RANGE	CHARACTERISTICS					
		Rated Power	Operating Temperature Range	Max. Working Voltage	Max. Overload Voltage	Dielectric Withstanding Voltage	Temperature Coefficient of Resistance
RV0603	5% (E-24) 47Ω to 10MΩ 1% (E-24/E-96) 47Ω to 10MΩ 0.5% (E-24/E-96) 47Ω to 10MΩ	1/10W		350V	500V	500V	
RV0805	5% (E-24) 47Ω to 22MΩ 1% (E-24/E-96) 47Ω to 22MΩ 0.5% (E-24/E-96) 47Ω to 10MΩ	1/8 W		400 V	800 V	800 V	
RV1206	5% (E-24) 47Ω to 27MΩ 1% (E-24/E-96) 47Ω to 27MΩ 0.5% (E-24/E-96) 47Ω to 15MΩ	1/4 W	-55 °C to +155 °C	500 V	1,000 V	1,000 V	47Ω ≤ R ≤ 10MΩ ±100 ppm °C R > 10MΩ ±200 ppm °C
RV2010	5% (E-24) 47Ω to 22MΩ 1% (E-24/E-96) 47Ω to 22MΩ 0.5% (E-24/E-96) 47Ω to 10MΩ	3/4W		500 V	1,000 V	1,000 V	
RV2512	5% (E-24) 47Ω to 16MΩ 1% (E-24/E-96) 47Ω to 16MΩ 0.5% (E-24/E-96) 47Ω to 10MΩ	1 W		500 V	1,000 V	1,000 V	

FOOTPRINT AND SOLDERING PROFILES

For recommended footprint and soldering profiles, please refer to data sheet "Chip resistors mounting".

PACKING STYLE AND PACKAGING QUANTITY

Table 3 Packing style and packaging quantity

PACKING STYLE	REEL DIMENSION	RV0603	RV0805	RV1206	RV2010	RV2512
Paper/PE taping reel (R)	7" (178 mm)	5,000	5,000	5,000	---	---
Embossed taping reel (K)	7" (178 mm)	---	---	---	4,000	4,000

NOTE

- For Paper/PE/Embossed tape and reel specification/dimensions, please refer to data sheet "Chip resistors packing".

FUNCTIONAL DESCRIPTION**OPERATING TEMPERATURE RANGE**

Range: -55°C to $+155^{\circ}\text{C}$

POWER RATING

Each type rated power at 70°C :

RV0603=1/10W; RV0805=1/8W; RV1206=1/4W;
RV2010=3/4W; RV2512=1W

RATED VOLTAGE

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P \times R)}$$

or max. working voltage whichever is less

Where

V = Continuous rated DC or AC (rms) working voltage (V)

P = Rated power (W)

R = Resistance value (Ω)

Maximum working voltage can be applicable to resistors only if the resistance value is equal to or higher than the critical resistance value.

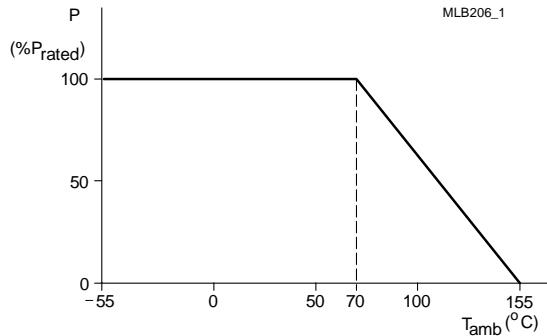


Fig. 6 Maximum dissipation (P_{\max}) in percentage of rated power as a function of the operating ambient temperature (T_{amb})

TESTS AND REQUIREMENTS**Table 4** Test condition, procedure and requirements

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
High Temperature Exposure	AEC-Q200 Test 3 MIL-STD-202 Method 108	1,000 hours at $T_A = 155$ °C, unpowered	$\pm(1.0\%+0.05\Omega)$
Moisture Resistance	MIL-STD-202 Method 106	Each temperature / humidity cycle is defined at 8 hours, 3 cycles / 24 hours for 10d. with 25 °C / 65 °C 95% R.H, without steps 7a & 7b, unpowered	$\pm(2.0\%+0.05\Omega)$
Biased Humidity	AEC-Q200 Test 7 MIL-STD-202 Method 103	1,000 hours; 85 °C / 85% RH 10% of operating power Measurement at 24 ± 4 hours after test conclusion.	$\pm(5.0\%+0.05\Omega)$
Operational Life	AEC-Q200 Test 8 MIL-STD-202 Method 108	1,000 hours at 125 °C, derated voltage applied for 1.5 hours on, 0.5 hour off, still-air required	$\pm(3.0\%+0.05\Omega)$
Resistance to Soldering Heat	AEC-Q200 Test 15 MIL-STD-202 Method 210	Condition B, no pre-heat of samples Lead-free solder, 260 ± 5 °C, 10 ± 1 seconds immersion time Procedure 2 for SMD: devices fluxed and cleaned with isopropanol	$\pm(1.0\%+0.05\Omega)$ No visible damage
Thermal Shock	MIL-STD-202 Method 107	-55/+125 °C Number of cycles is 300. Devices mounted Maximum transfer time is 20 seconds. Dwell time is 15 minutes. Air – Air	$\pm(1.0\%+0.05\Omega)$
ESD	AEC-Q200 Test 17 AEC-Q200-002	Human Body Model, $I_{\text{pos.}} + I_{\text{neg.}}$ discharges 0201: 500V 0402/0603: 1KV 0805 and above: 2KV	$\pm(4.0\%+0.05\Omega)$

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability - Wetting	AEC-Q200 Test 18 J-STD-002	Electrical Test not required Magnification 50X SMD conditions: (a) Method B, aging 4 hours at 155 °C dry heat, dipping at 235±3 °C for 5±0.5 seconds. (b) Method B, steam aging 8 hours, dipping at 215±3 °C for 5±0.5 seconds. (c) Method D, steam aging 8 hours, dipping at 260±3 °C for 30±0.5 seconds.	Well tinned ($\geq 95\%$ covered) No visible damage
Board Flex	AEC-Q200 Test 21 AEC-Q200-005	Chips mounted on a 100mm x 40mm glass epoxy resin PCB (FR4) Bending for 0201/0402: 5 mm 0603/0805: 3 mm 1206 and above: 2 mm Holding time: minimum 60 seconds	$\pm(1.0\%+0.05\Omega)$
Temperature Coefficient of Resistance (T.C.R.)	MIL-STD-202 Method 304	At +25/-55 °C and +25/+125 °C	Refer to table 2
Short Time Overload	IEC60115-1 8.1	2.5 times of rated voltage or maximum overload voltage whichever is less for 5 sec at room temperature	$\pm(2.0\%+0.05\Omega)$

Formula:

$$T.C.R = \frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/}^{\circ}\text{C)}$$

Where

 $t_1 = +25$ °C or specified room temperature $t_2 = -55$ °C or +125 °C test temperature R_1 = resistance at reference temperature in ohms R_2 = resistance at test temperature in ohms

REVISION HISTORYREVISION DATE CHANGE NOTIFICATION DESCRIPTION

Version 1 Feb. 20, 2025 - - Upgrade TCR

Version 0 May. 10, 2022 - - First issue of this specification

LEGAL DISCLAIMER

YAGEO, its distributors and agents (collectively, "YAGEO"), hereby disclaims any and all liabilities for any errors, inaccuracies or incompleteness contained in any product related information, including but not limited to product specifications, datasheets, pictures and/or graphics. YAGEO may make changes, modifications and/or improvements to product related information at any time and without notice.

YAGEO makes no representation, warranty, and/or guarantee about the fitness of its products for any particular purpose or the continuing production of any of its products. To the maximum extent permitted by law, YAGEO disclaims (i) any and all liability arising out of the application or use of any YAGEO product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for a particular purpose, non -infringement and merchantability.

YAGEO products are designed for general purpose applications under normal operation and usage conditions. Please contact YAGEO for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property: Aerospace equipment (artificial satellite, rocket, etc.), Atomic energy-related equipment, Aviation equipment, Disaster prevention equipment, crime prevention equipment, Electric heating apparatus, burning equipment, Highly public information network equipment, data-processing equipment, Medical devices, Military equipment, Power generation control equipment, Safety equipment, Traffic signal equipment, Transportation equipment and Undersea equipment, or for any other application or use in which the failure of YAGEO products could result in personal injury or death, or serious property damage. Particularly **YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.**

Information provided here is intended to indicate product specifications only. YAGEO reserves all the rights for revising this content without further notification, as long as products are unchanged. Any product change will be announced by PCN.