KPS Series, X7R Dielectric, 10VDC-630VDC (Commercial and Automotive Grade)

Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)

Overview

KEMET Power Solutions (KPS) Series stacked capacitors utilize a proprietary lead-frame technology to vertically stack one or two multilayer ceramic chip capacitors into a single compact surface mount package. The attached lead-frame mechanically isolates the capacitor's from the printed circuit board, therefore offering advanced mechanical and thermal stress performance. Isolation also addresses concerns for audible, microphonic noise that may occur when a bias voltage is applied. A two chip stack offers up to double the capacitance in the same or smaller design footprint when compared to traditional surface mount MLCC devices.

Combined with the stability of an X7R dielectric, KEMET's KPS Series devices exhibit a predictable change in capacitance with respect to time and voltage and boast a minimal change in capacitance with reference to ambient temperature. Capacitance change is limited to ±15% from -55°C to +125°C.

KPS Series automotive grade capacitors meet the demanding Automotive Electronics Council's AEC-Q200 qualification requirements.

Benefits

- · Commercial and Automotive Grade
- EIA 1210, 1812 & 2220 case sizes
- -55°C to +125°C operating temperature range
- DC voltage ratings of 10V, 16V, 25V, 50V, 100V, 250V, 500V, and 630V.
- Capacitance offerings ranging from 0.047µF up to 47µF
- Available capacitance tolerances of ±10% & ±20%
- Sn and SnPb Termination finish available¹
- · Higher capacitance in the same footprint
- Potential board space savings
- Advanced protection against thermal & mechanical stress
- · Provides up to 10mm of board flex capability
- · Reduces audible, microphonic noise
- Lead (Pb)-Free, RoHS and REACH compliant²
- · Non-polar device, minimizing installation concerns
- Tantalum & electrolytic alternative

Applications

- SMPS (Switch Mode Power Supplies)
- DC/DC Converters
- Telecom equipment
- · Industrial and medical equipment
- Filtering
- Bypass

1 | YAGEOGroup.com C1129_KPS_X7R (09/25)

¹ SnPb finish only available in Commercial Grade

² With Sn termination finish.

Ordering Information

C	2220	C	106	M	5	R	2	С	7186
Ceramic	Case Size (L" x W")	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance ¹	Rated Voltage (VDC)	Dielectric	Failure Rate/ Design	Leadframe Finish ²	Packaging/ Grade (C-Spec)
	1210 1812 2220	C = Standard	2 Sig. Digits + Number of Zeros	K = ±10% M = ±20%	8 = 10 4 = 16 3 = 25 5 = 50 1 = 100 A = 250 C = 500 B = 630	R = X7R	1 = KPS Single Chip Stack 2 = KPS Double Chip Stack	C = 100% Matte Sn L = SnPb (5% Pb min.)	See "Packaging C-Spec Ordering Options Table"

¹ Double chip stacks ("2" in the 13th character position of the ordering code) are only available in M (\pm 20%) capacitance tolerance. Single chip stacks ("1" in the 13th character position of the ordering code) are available in K (\pm 10%) or M (\pm 20%) tolerances.

Packaging C-Spec Ordering Options Table

Packaging Type ¹	Packaging/Grade Ordering Code (C-Spec)
Commerci	cial Grade
7" Reel (Embossed Plastic Tape)/Unmarked	7186
13" Reel (Embossed Plastic Tape)/Unmarked	7289
Automot	ive Grade
7" Reel (Embossed Plastic Tape) / Unmarked	AUTO 7289
13" Reel (Embossed Plastic Tape) / Unmarked	7289

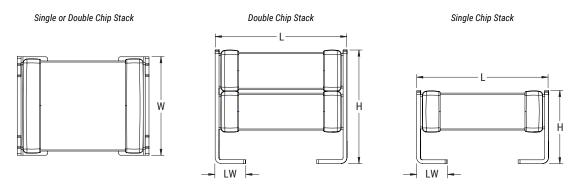
¹ The terms "Marked" and "Unmarked" pertain to laser marking option of capacitors. All packaging options labeled as "Unmarked" will contain capacitors that have not been laser marked. The option to laser mark is not available on these devices. For more information see "Capacitor Marking."

Application Note

X7R dielectric is not recommended for AC line filtering or pulse applications.

² SnPb finish only available in Commercial Grade

² For additional Information regarding "AUTO" C-Spec options, see "Automotive C-Spec Information".


Qualification/Certification

Commercial grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 4, Performance & Reliability.

Environmental Compliance

These devices do not meet RoHS criteria when orders with SnPb finish.

Dimensions - Inches (Millimeters)

Number of Chips	EIA SIZE CODE	METRIC SIZE CODE	L LENGTH	W WIDTH	H HEIGHT	LW LEAD WIDTH	Mounting Technique
	1210	3225	3.50 (0.138) ±0.30 (0.012)	2.60 (0.102) ±0.30 (0.012)	3.35 (0.132) ±0.10 (0.004)	0.80 (0.032) ±0.15 (0.006)	
Single	1812	4532	5.00 (0.197) ±0.50 (0.020)	3.50 (0.138) ±0.50 (0.020)	2.65 (0.104) ±0.35 (0.014)	1.10 (0.043) ±0.30 (0.012)	
	2220	5650	6.00 (0.236) ±0.50 (0.020)	5.00 (0.197) ±0.50 (0.020)	3.50 (0.138) ±0.30 (0.012)	1.60 (0.063) ±0.30 (0.012)	Solder Reflow
	1210	3225	3.50 (0.138) ±0.30 (0.012)	2.60 (0.102) ±0.30 (0.012)	6.15 (0.242) ±0.15 (0.006)	0.80 (0.031) ±0.15 (0.006)	Only
Double	1812	4532	5.00 (0.197) ±0.50 (0.020)	3.50 (0.138) ±0.50 (0.020)	5.00 (0.197) ±0.50 (0.020)	1.10 (0.043) ±0.30 (0.012)	
	2220	5650	6.00 (0.236) ±0.50 (0.020)	5.00 (0.197) ±0.50 (0.020)	5.00 (0.197) ±0.50 (0.020)	1.60 (0.063) ±0.30 (0.012)	

KPS Series, X7R Dielectric, 10VDC-630VDC (Commercial and Automotive Grade) Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)

Automotive C-Spec Information

KEMET Automotive Grade products meet or exceed the requirements outlined by the Automotive Electronics Council. Details regarding test methods and conditions are referenced in document AEC-Q200, Stress Test Qualification for Passive Components. These products are supported by a Product Change Notification (PCN) and Production Part Approval Process warrant (PPAP).

Automotive products offered through our distribution channel have been assigned an inclusive ordering code C-Spec, "9170." This C-Spec was developed in order to better serve small and medium sized companies that prefer an automotive grade component without the requirement to submit a customer Source Controlled Drawing (SCD) or specification for review by a KEMET engineering specialist. This C-Spec is therefore not intended for use by KEMET's OEM Automotive customers and are not granted the same "privileges" as other automotive C-Specs. Customer PCN approval and PPAP request levels are limited (see details below).

Product Change Notification (PCN)

The KEMET Product Change Notification system is used to communicate primarily the following types of changes:

- Product/process changes that affect product form, fit, function, and/or reliability
- · Changes in manufacturing site
- Product obsolescence

KEMET Automotive	Customer Notifica	tion due to:	Days prior to
C-Spec	Process/Product change	Obsolescence*	implementation
KEMET assigned ¹	Yes (with approval and sign off)	Yes	180 days Minimum
AUT0	Yes (without approval)	Yes	90 days Minimum

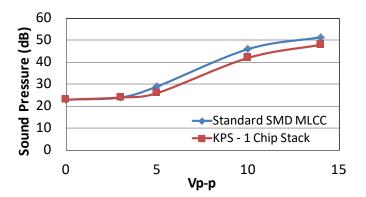
¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

Production Part Approval Process (PPAP)

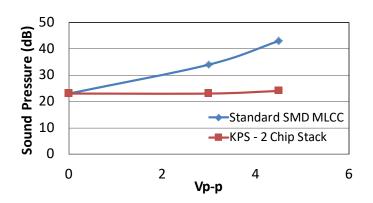
The purpose of the Production Part Approval Process is:

- To ensure that supplier can meet the manufacturability and quality requirements for the purchased parts.
- To provide the evidence that all customer engineering design record and specification requirements are properly understood and fulfilled by the manufacturing organization.
- To demonstrate that the established manufacturing process has the potential to produce the part

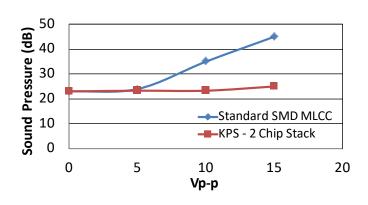
KEMET Automotive		PPAP Level											
C-Spec	1	2	3	4	5								
KEMET assigned ¹	•	•	•	•	•								
AUT0			0										

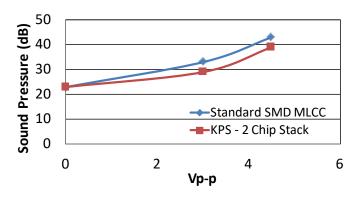

¹ KEMET assigned C-Specs require the submittal of a customer SCD or customer specification for review. For additional information contact KEMET.

- Part number specific PPAP available with customer information included.
- Product family PPAP only

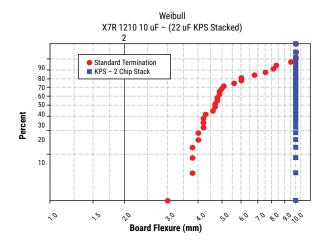


Electrical Characteristics

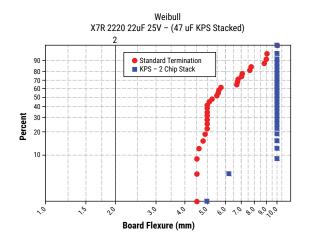

Microphonics – 1210, 4.7 μF, 50 V, X7R


Microphonics - 2220, 22 μF, 50 V, X7R

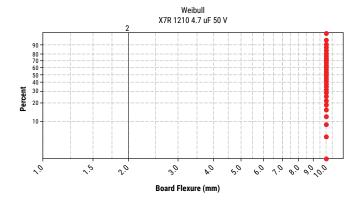
Microphonics - 2220, 47 μF, 25 V, X7R

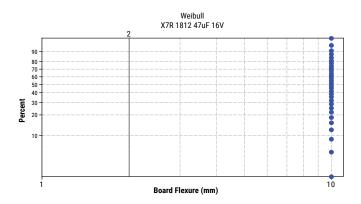


Microphonics – 1210, 22 μF, 25 V, X7R



Electrical Characteristics cont.


Board Flex vs. Termination Type


Board Flex vs. Termination Type

Board Flexure to 10 mm

Board Flexure to 10 mm

Table 1A - Capacitance Range/Selection Waterfall (Commercial Grade / Sn Termination)

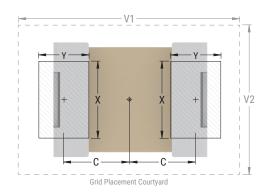
			Size/ries			C12	10C				C	1812	С				С	2220	С		
Capacitance	Cap	Voltag	e Code	8	4	3	5	1	A	4	3	5	1	Α	4	3	5	1	Α	С	В
Capacitance	Code		Voltage	10	16	25	50	100	250	16	25	50	100	250	16	25	50	100	250	500	630
		Capac	DC) itance																		
			rance				Product					s Code:	s - See	Table 2	tor Unip	Inickr	ess Dim	ension	s 		
								Singl	e Chi	p Sta	ick										
0.047 uF	473	K	М																	JP	JP
0.1 uF	104	K	M	FV	FV	FV	FV	FV	FV	GP	GP	GP	GP	GP	JP	JP	JP	JP	JP	JP	JP
0.15 uF	154	K	M																	JP	JP
0.22 uF	224	K	M	FV	FV	FV	FV	FV		GP	GP	GP	GP	GP	JP	JP	JP	JP	JP	JP	JP
0.33 uF	334	K	М																	JP	
0.47 uF	474	K	M	FV	F۷	FV	F۷	FV		GP	GP	GP	GP	GP	JP	JP	JP	JP	JP	JP	
1.0 uF	105	K	M	F۷	FV	FV	FV	FV		GP	GP	GP	GP		JP	JP	JP	JP	JP		
2.2 uF	225	K	M	F۷	FV	FV	FV	FV		GP	GP	GP	<u> </u>		JP	JP	JP	JP			
3.3 uF	335	K	M	F۷	FV	FV	FV			GP	GP	GP	<u> </u>		JP	JP	JP	JP			
4.7 uF	475	K	M	FV	FV	FV	FV			GP	GP	GP			JP	JP	JP				
10 uF	106	K	M	FV	FV	FV				GP	GP				JP	JP	JP				
15 uF	156	K	M	FV											JP	JP					
22 uF	226	K	М	FV											JP	JP					
								Doub	le Ch	ip Sta	ack										
0.1 Uf	104		М	FW	FW	FW	FW	FW	FW	GR	GR	GR	GR	GR	JR	JR	JR	JR	JR	JR	JR
0.22 uF	224		М	FW	FW	FW	FW	FW	FW	GR	GR	GR	GR	GR	JR	JR	JR	JR	JR	JR	JR
0.33 uF	334		М	İ									İ							JR	JR
0.47 uF	474		М	FW	FW	FW	FW	FW		GR	GR	GR	GR	GR	JR	JR	JR	JR	JR	JR	JR
0.68 uF	684		М	İ									İ							JR	
1.0 uF	105		М	FW	FW	FW	FW	FW		GR	GR	GR	GR	GR	JR	JR	JR	JR	JR	JR	
2.2 uF	225		М	FW	FW	FW	FW	FW		GR	GR	GR	GR	l	JR	JR	JR	JR	JR		
3.3 uF	335		М	FW	FW	FW	FW	FW		GR	GR	GR	GR	l	JR	JR	JR	JR			
4.7 uF	475		М	FW	FW	FW	FW	FW		GR	GR	GR	l	l	JR	JR	JR	JR			
10 uF	106		М	FW	FW	FW	FW			GR	GR	GR	l	l	JR	JR	JR				
22 uF	226		М	FW	FW	FW				GR	GR				JR	JR	JR				
33 uF	336		М	FW											JR	JR					
47 uF	476		М	FW											JR	JR					
			Voltage DC)	10	16	25	50	100	250	16	25	50	100	250	16	25	50	100	250	500	630
0	Cap		e Code	8	4	3	5	1	Α	4	3	5	1	Α	4	3	5	1	Α	С	В
Capacitance	Code	Case	Size/			_	10C	-				1812	С		C2220C			-	_		

Table 1B - Capacitance Range/Selection Waterfall (Commercial Grade / SnPb Termination)

		Case Size/ Series			C12	10C						C22	20C			
	Capacitance	Voltage Code	8	4	3	5	1	Α	4	3	5	М	1	Α	С	В
Capacitance	Code	Rated Voltage (VDC)	10	16	25	50	100	250	16	25	50	63	100	250	500	630
		Capacitance Tolerance	Tolerance See Table 2 for Chip Thickness Dimensions													
				S	ingle	Chip S	Stack									
0.047 uF	473	K M													JP	JP
0.1 uF	104	K M	FV	FV	FV	FV	FV	FV	JP	JP	JP	JP	JP	JP	JP	JP
0.15 uF	154	K M													JP	JP
0.22 uF	224	K M	FV	FV	FV	FV	FV		JP	JP	JP	JP	JP	JP	JP	JP
0.33 uF	334	K M													JP	
0.47 uF	474	K M	FV	FV	FV	FV	FV		JP	JP	JP	JP	JP	JP	JP	
1.0 uF	105	K M	FV	FV	FV	FV	FV		JP	JP	JP	JP	JP	JP		
2.2 uF	225	K M	FV	FV	FV	FV			JP	JP	JP	JP	JP			
3.3 uF	335	K M	FV	FV	FV	FV			JP	JP	JP	JP	JP			
4.7 uF	475	K M	FV	FV	FV	FV			JP	JP	JP	JP				
10 uF	106	K M	FV	FV	FV				JP	JP	JP	JP				
15 uF	156	K M	FV						JP	JP						
22 uF	226	K M	FV						JP	JP						
				D	ouble	Chip	Stack									
0.1 uF	104	M	FW	FW	FW	FW	FW	FW	JR	JR	JR	JR	JR	JR	JR	JR
0.22 uF	224	M	FW	FW	FW	FW	FW	FW	JR	JR	JR	JR	JR	JR	JR	JR
0.33 uF	334	M													JR	JR
0.47 uF	474	M	FW	FW	FW	FW	FW		JR	JR	JR	JR	JR	JR	JR	JR
0.68 uF	684	M													JR	
1.0 uF	105	M	FW	FW	FW	FW	FW		JR	JR	JR	JR	JR	JR	JR	
2.2 uF	225	M	FW	FW	FW	FW	FW		JR	JR	JR	JR	JR	JR		
3.3 uF	335	M	FW	FW	FW	FW	FW		JR	JR	JR	JR	JR			
4.7 uF	475	M	FW	FW	FW	FW			JR	JR	JR	JR	JR			
10 uF	106	M	FW	FW	FW	FW			JR	JR	JR	JR				
22 uF	226	M	FW	FW	FW				JR	JR	JR	JR				
33 uF	336	M	FW						JR	JR						
47 uF	476	M	FW						JR	JR						
47 μF	476	M	FW						JR	JR						
		Rated Voltage (VDC)	10	16	25	50	100	250	16	25	50	63	100	250	500	630
Capacitance	Capacitance	Voltage Code	8	4	3	5	1	Α	4	3	5	М	1	Α	С	В
Capacitailce	Code	Case Size/ Series		,	C12	10C	,	,			,	C22	20C			

Table 1C – Capacitance Range/Selection Waterfall (Automotive Grade)

			Size/ries			C12	10C				C	1812	С				С	2220	С		
Capacitance	Cap	Voltag	e Code	8	4	3	5	1	A	4	3	5	1	Α	4	3	5	1	Α	С	В
Capacitance	Code		Voltage	10	16	25	50	100	250	16	25	50	100	250	16	25	50	100	250	500	630
		Capac	DC) itance				Draduat	Availab	ility on	l Chin T	hioknoo	o Codo	- 500	Toble 2	for Chin	Thicks	ooo Dim	onoion			
		Toler	rance						<u> </u>			S Coue	- See	I able 2	ioi Cilip	THICKI	ess Dill	iensions			
								Singl	e Chi	p Sta	ıck										
0.047 uF	473	K	М																	JP	JP
0.1 uF	104	K	М	FV	FV	FV	FV	FV	FV	GP	GP	GP			JP	JP	JP	JP	JP	JP	JP
0.15 uF	154	K	M																	JP	JP
0.22 uF	224	K	M	FV	FV	FV	FV	FV		GP	GP	GP			JP	JP	JP	JP	JP	JP	JP
0.33 uF	334	K	М																		
0.47 uF	474	K	M	FV	FV	FV	FV	FV		GP	GP	GP			JP	JP	JP				
1.0 uF	105	K	M	FV	FV	FV	FV	FV		GP	GP	GP			JP	JP	JP				
2.2 uF	225	K	M	F۷	FV	FV	FV			GP	GP	GP			JP	JP	JP				
3.3 uF	335	K	M	F۷	FV	FV	FV			GP	GP	GP			JP	JP	JP				
4.7 uF	475	K	M	FV	FV	FV	FV			GP	GP	GP			JP	JP	JP				
10 uF	106	K	M	FV	FV	FV				GP	GP				JP	JP	JP				
15 uF	156	K	M												JP	JP					
22 uF	226	K	М												JP	JP					
								Doub	le Ch	ip Sta	ack										
0.1 uF	104		М	FW	FW	FW	FW	FW	FW	GR	GR	GR			JR	JR	JR	JR	JR	JR	JR
0.22 uF	224		М	FW	FW	FW	FW	FW	FW	GR	GR	GR			JR	JR	JR	JR	JR	JR	JR
0.33 uF	334		М																	JR	JR
0.47 uF	474		М	FW	FW	FW	FW	FW		GR	GR	GR			JR	JR	JR	JR	JR	JR	JR
0.68 uF	684		М																		
1.0 uF	105		М	FW	FW	FW	FW	FW		GR	GR	GR			JR	JR	JR				
2.2 uF	225		М	FW	FW	FW	FW	FW		GR	GR	GR			JR	JR	JR				
3.3 uF	335		М	FW	FW	FW	FW			GR	GR	GR			JR	JR	JR				
4.7 uF	475		М	FW	FW	FW	FW			GR	GR	GR			JR	JR	JR				
10 uF	106		М	FW	FW	FW	FW			GR	GR	GR			JR	JR	JR				
22 uF	226		М	FW	FW	FW				GR	GR				JR	JR	JR				
33 uF	336		М												JR	JR					
47 uF	476		М												JR	JR					
			Voltage	10	16	25	50	100	250	16	25	50	100	250	16	25	50	100	250	500	630
	Cap	(V)	DC) e Code	8	4	3	5	1	A	4	3	5	1	A	4	3	5			С	В
Capacitance	Code				-	_ <u>_</u>	J	'		-	_ ,			_^	C2220C			U	ь		
	Coue		Size/ ries			C12	10C				C	1812	C								


Table 2 - Chip Thickness/Tape & Reel Packaging Quantities

Thickness	Case	Thickness ±	Reel Q	uantity
Code	Size	Range (mm)	7" Reel	13" Reel
FV	1210	3.35 ± 0.10	600	2,000
FW	1210	6.15 ± 0.15	300	1,000
GP	1812	2.65 ± 0.35	500	2,000
GR	1812	5.00 ± 0.50	400	1,700
JP	2220	3.50 ± 0.30	300	1,300
JR	2220	5.00 ± 0.50	200	800
Thickness	Case	Thickness ±	7" Reel	13" Reel
Code	Size	Range (mm)	Reel Q	uantity

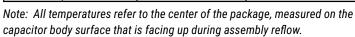
Package quantity based on finished chip thickness specifications.

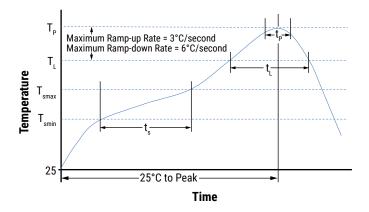
Table 3 – KPS Land Pattern Design Recommendations (mm)

EIA SIZE CODE	METRIC SIZE	Median (Nominal) Land Protrusion										
OODL	CODE	C	Y	Х	V1	V2						
1210	3225	1.50	1.14	1.75	5.05	3.40						
1812	4532	2.20	1.35	2.87	6.70	4.50						
2220	5650	2.69	2.08	4.78	7.70	6.00						

KEMET's KPS Series land pattern design recommendations have been evaluated through extensive internal testing and validation. KPS lead frames are used to mechanically isolate the MLCC from the PCB and provide stress relief for increased mechanical robustness. The land pattern dimensions for each EIA size code are designed to be encompassed within the end terminations thus regulating solder wicking and maintaining lead frame flexibility. This design is optimized to enable durable solder joint fillets which improve the mechanical integrity and reliability upon placement.

Soldering Process


KEMET's KPS devices are compatible with IR reflow techniques. Preheating of these components is recommended to avoid extreme thermal stress. KEMET's recommended profile conditions for IR reflow reflect the profile conditions of the IPC/J-STD-020D standard for moisture sensitivety testing.


To prevent degradation of temperature cycling capability, care must be taken to prevent solder from flowing into the inner side of the lead frames (inner side of "J" lead in contact with the circuit board).

After soldering, the capacitors should be air cooled to room temperature before further processing. Forced air cooling is not recommended.

Hand soldering should be performed with care due to the difficulty in process control. If performed, care should be taken to avoid contact of the soldering iron to the capacitor body. The iron should be used to heat the solder pad, applying solder between the pad and the lead, until reflow occurs. Once reflow occurs, the iron should be removed immediately. (Preheating is required when hand soldering to avoid thermal shock.)

Profile Feature	SnPb Assembly	Pb-Free Assembly
Preheat/Soak		
Temperature Minimum (T _{Smin})	100°C	150°C
Temperature Maximum (T _{Smax})	150°C	200°C
Time (t_s) from T_{smin} to T_{smax})	60 - 120 seconds	60 - 120 seconds
Ramp-up Rate (T _L to T _P)	3°C/seconds maximum	3°C/seconds maximum
Liquidous Temperature (T _L)	183°C	217°C
Time Above Liquidous (t _L)	60 - 150 seconds	60 - 150 seconds
Peak Temperature (T _p)	235°C	250°C
Time within 5°C of Maximum Peak Temperature (t,)	20 seconds maximum	10 seconds maximum
Ramp-down Rate $(T_p \text{ to } T_L)$	6°C/seconds maximum	6°C/seconds maximum
Time 25°C to Peak Temperature	6 minutes maximum	8 minutes maximum

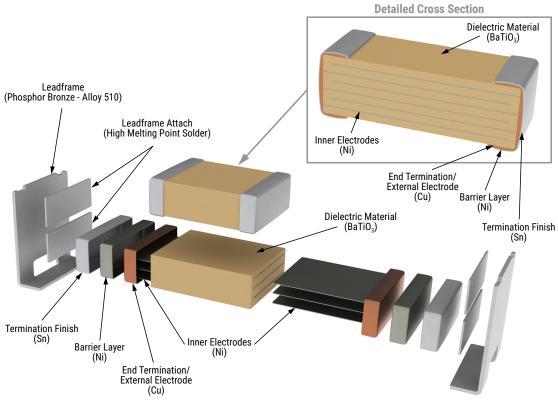
Table 4 – Performance & Reliability: Test Methods & Conditions

TEST	REFERENCE	TEST CONDITIONS				LIMITS	LIMITS						
Visual & Mechanical	KEMET Internal	No defects that may affect performance (10X)	Dimensions according KEMET Spec Sheet										
Capacitance (Cap)	KEMET Internal	1 kHz ±50 Hz and 1.0 ±0.2 Vrms if capacitance \leq 10 μF 120 Hz ±10 Hz and 0.5 ±0.1 Vrms if capacitance > 10 μF	Within Tolerance Note: When measuring capacitance it is important to ensure the set voltage level is held constant. The HP4284 & Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON".										
			Within Specification										
					DF Limi	ts Maximum	(%)						
Dissipation Factor	KEMET Internal	1 kHz ± 50 Hz and 1.0 ± 0.2 Vrms if capacitance $\leq 10~\mu F$ 120 Hz ± 10 Hz and 0.5 ± 0.1 Vrms if capacitance $> 10~\mu F$		'	Voltage		Initial						
(DF)		120 HZ ±10 HZ and 0.5 ±0.1 Viins ii capacitance > 10 pr			> 25 16/25		3.5						
					< 16		5						
				to GΩ lim	ride MΩ-μl nit. Select	the lower of	capacitance the two limits	and compare 100 Megohm Microfarads					
Insulation Resistance (IR)			Size	Stack ingle / Double	Voltage 16 - 250	1,000 Megohm Microfarads or 100 G < 0.39 µF	Microfarads or 10G ≥ 0.39 µF	Microtarads or 1G					
	KEMET Internal	Apply rated voltage for 120 seconds at 25oC	II	ingle / Double	16-250	< 2.2 μF	≥ 2.2 µF						
, ,			2220 Sii 2220	ingle / Double Single	16-250 ≥ 500	< 10 µF ≤ 0.22 µF	≥ 10 µF	≥ 0.33 µF					
			2220	Double	≥ 500	± 0.47 µF		≥ 0.68 µF					
Temperature Coefficient of Capacitance (TCC)	KEMET Internal	1 kHz ±50 Hz and 1.0 ±0.2 Vrms if capacitance ≤ 10 μF 120 Hz ±10 Hz and 0.5 ±0.1 Vrms if capacitance > 10 μF		Capac	citance ±1	5% over -55°(C to +125°C						
Dielectric Withstanding Voltage (DWV)	KEMET Internal	250% of rated voltage for voltage rating ≤250V 150% of rated voltage for voltage rating 500V and 630V (5 ±1 seconds and charge/discharge not exceeding 50 mA)	Withstand test voltage without insulation breakdown or damage.										
Aging Rate (Maximum % Capacitance Loss/ Decade Hour)	KEMET Internal	3.0% Capacitance Loss / Decade Hour Capacitance measurements (including tolerance) are indexed to a referee time of 1,000 hours.	Please ref	fer to a pa	rt numbe	specification rate	ı sheet for sp	ecific Aging					

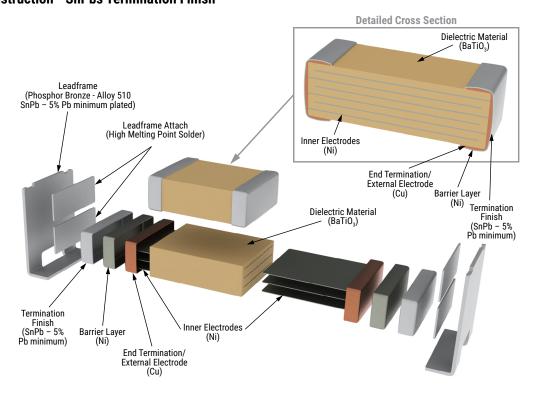
Table 4 - Performance & Reliability: Test Methods & Conditions cont.

		Shear stress test per specific case size, Time: 60±1 sec. Force: 18N				
Terminal Strength	KEMET Internal	No evidence of mechanical damage			l damage	
Board Flex	AEC-Q200-005	5.0mm Minimum Test time: 60± 5sec Ramp time: 1 mm / sec No evidence of mechanical damage				
Solderability	J-STD-002	Condition: 4 hours ± 15 minutes at 155°C dry bake apply all methods Test 245 ±5°C (SnPb & Pb-Free)	Visual Inspection. 95% coverage on termination. No leaching			
Temperature Cycling	JESD22 Method JA-104	1,000 cycles (-55°C to +125°C) 2-3 cycles per hour Soak Time 1 or 5 min	Measurement at 24 hours ±4 hours after test conclusion. Cap: ±20% shift DF: Initial Limit IR: Initial Limit			
	MIL-STD-202 Method 103	Load Humidity: 1,000 hours 85°C / 85% RH and rated voltage.	Measurement at 24 hours ±4 hours after test conclusion. Within Post Environmental Limits Cap: ±20% shift IR: 10% of Initial Limit			
			DF Limits Maximum (%)			
Biased Humidity			Voltage	Initial	Initial	
			> 25	2.5	3.0	
		Low Volt Humidity: 1,000 hours 85°C / 85% RH and 1.5 V.	16/25	3.5 5	5.0 7.5	
Thermal Shock	MIL-STD-202 Method 107	Number of cycles required 5, (-55°C to 125°C) Dwell time 15 minutes.	Cap:±20% shift DF: Initial Limit IR: Initial Limit			

Table 4 - Performance & Reliability: Test Methods & Conditions cont.


High Temperature Life	MIL-STD-202 Method 108	150% of rated voltage for voltage rating ≤250V 100% of rated voltage for voltage rating ≥500V 1,000 hours at 125°C	Within Post Environmental Limits Cap: ±20% shift IR: 10% of Initial Limit DF Limits Maximum (%)				
				Voltage	Initial	Initial	1
				> 25	2.5	3.0	
				16/25	3.5	5.0	
				< 16	5	7.5	
Vibration	MIL-STD-202 Method 204	5 g's for 20 minutes, 12 cycles each of 3 orientations. Test from 10 – 2,000 Hz			Cap: ±20% shift DF: Initial Limit IR: Initial Limit		
Resistance to Soldering Heat	MIL-STD-202 Method 210	Condition K, time above 217°C, 60s – 150s	Cap: ±20% shift DF: Initial Limit IR: Initial Limit				

Storage & Handling


Ceramic chip capacitors should be stored in normal working environments. While the chips themselves are quite robust in other environments, solderability will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature - reels may soften or warp and tape peel force may increase. KEMET recommends that maximum storage temperature not exceed 40°C and maximum storage humidity not exceed 70% relative humidity. In addition, temperature fluctuations should be minimized to avoid condensation on the parts and atmospheres should be free of chlorine and sulfur bearing compounds. For optimized solderability chip stock should be used promptly, preferably within 1.5 years of receipt.

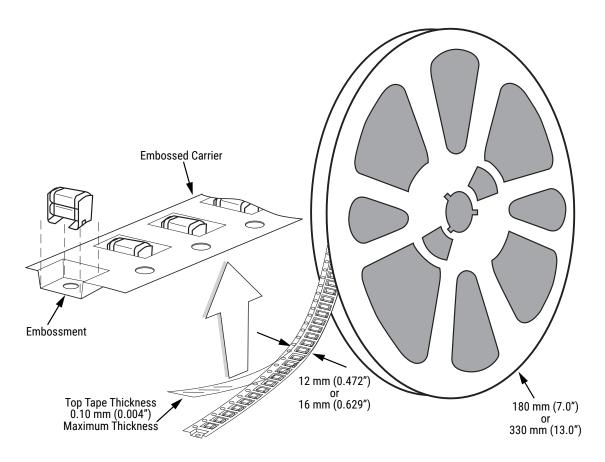
Construction

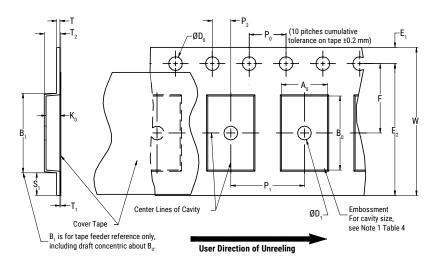
Construction - Sn Termination Finish

Construction - SnPbs Termination Finish

Tape & Reel Packaging Information

KEMET offers multilayer ceramic chip capacitors packaged in 8, 12 and 16 mm tape on 7" and 13" reels in accordance with EIA Standard 481. This packaging system is compatible with all tape-fed automatic pick and place systems. See Table 2 for details on reeling quantities for commercial chips.




Table 5 - Carrier Tape Configuration - Embossed Plastic (mm)

EIA Case Size	Tape Size (W)*	Pitch (P ₁)*		
KPS 1210	12	8	8	
KPS 1812 & 2220	16	12	12	

^{*}Refer to Figure 1 for W and P, carrier tape reference locations.

^{*}Refer to Table 5 for tolerance specifications.

Figure 1 - Embossed (Plastic) Carrier Tape Dimensions

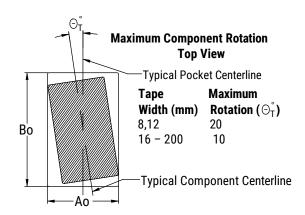
Table 6 – Embossed (Plastic) Carrier Tape Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)									
Tape Size	D ₀	D ₁ Minimum Note 1	E ₁	P ₀	P ₂	R Reference Note 2	S ₁ Minimum Note 3	T Maximum	T ₁ Maximim
8 mm		1.0 (0.039)				25.0 (0.984)	2.422		0.100
12 mm	1.5 +0.10/0.0-0.0 (0.059 +0.004/-0.0)		1.75 ±0.10 (0.069 ±0.004)	4.0 ±0.10 (0.157 ±0.004)	2.0 ±0.05 (0.079 ±0.002)	30	0.600 (0.024)	0.600 (0.024)	0.100 (0.004)
16 mm		(0.059)				(1.181)			
	Variable Dimensions — Millimeters (Inches)								
Tape Size	Pitch	B ₁ Maximum Note 4	E ₂ Minimum	F	P ₁	T_2 Maximum	W Maximum	A ₀ , B ₀	& K ₀
8 mm	Single (4 mm)	4.35 (0.171)	6.25 (0.246)	3.5 ±0.05 (0.138 ±0.002)	4.0 ±0.10 (0.157 ±0.004)	2.5 (0.098)	8.3 (0.327)		
12 mm	Single (4 mm) and Double (8 mm)	8.2 (0.323)	10.25 (0.404)	5.5 ±0.05 (0.217 ±0.002)	8.0 ±0.10 (0.315 ±0.004)	4.6 (0.181)	12.3 (0.484)	Note 5	
16 mm	Triple (12 mm)	12.1 (0.476)	14.25 (0.561)	7.5 ±0.05 (0.138 ±0.002)	12.0 ±0.10 (0.157 ±0.004)	4.6 (0.181)	16.3 (0.642)		

- 1. The embossment hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 2. The tape with or without components shall pass around R without damage (see Figure 5).
- 3. If $S_1 < 1.0$ mm, there may not be enough area for cover tape to be properly applied (see EIA Standard 481 paragraph 4.3 section b).
- 4. B_1 dimension is a reference dimension for tape feeder clearance only.
- 5. The cavity defined by A_{o} , B_{o} and K_{o} shall surround the component with sufficient clearance that:
 - (a) the component does not protrude above the top surface of the carrier tape.
 - (b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the top cover tape has been removed.
 - (c) rotation of the component is limited to 20° maximum for 8 and 12 mm tapes and 10° maximum for 16 mm tapes (see Figure 2).
 - (d) lateral movement of the component is restricted to 0.5 mm maximum for 8 and 12 mm wide tape and to 1.0 mm maximum for 16 mm tape (see Figure 3).
 - (e) for KPS Series product, A and B are measured on a plane 0.3 mm above the bottom of the pocket.
 - (f) see Addendum in EIA Standard 481 for standards relating to more precise taping requirements.

Packaging Information Performance Notes


- 1. Cover Tape Break Force: 1.0 kg minimum.
- 2. Cover Tape Peel Strength: The total peel strength of the cover tape from the carrier tape shall be:

Tape Width	Peel Strength		
8 mm	0.1 to 1.0 newton (10 to 100 gf)		
12 and 16 mm	0.1 to 1.3 newton (10 to 130 gf)		

The direction of the pull shall be opposite the direction of the carrier tape travel. The pull angle of the carrier tape shall be 165° to 180° from the plane of the carrier tape. During peeling, the carrier and/or cover tape shall be pulled at a velocity of 300 ±10 mm/minute.

3. Labeling: Bar code labeling (standard or custom) shall be on the side of the reel opposite the sprocket holes. *Refer to EIA Standards 556 and 624*.

Figure 2 - Maximum Component Rotation

Maximum Component Rotation Side View \ominus_s° Tape Maximum Width (mm) Rotation (\ominus_s°) 8,12 20 16 - 56 10 72 - 200 5

Figure 3 – Maximum Lateral Movement

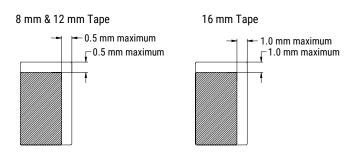
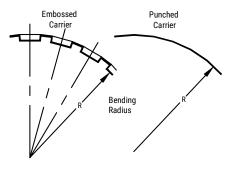
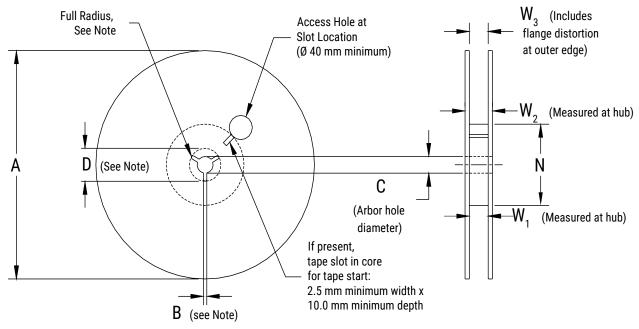




Figure 4 - Bending Radius

Figure 5 - Reel Dimensions

Note: Drive spokes optional; if used, dimensions B and D shall apply.

Table 7 - Reel Dimensions

Metric will govern

Constant Dimensions — Millimeters (Inches)								
Tape Size	A	B Minimum	С	D Minimum				
8 mm	178 ±0.20							
12 mm	(7.008 ±0.008) or	1.5 (0.059)	13.0 +0.5/-0.2 (0.521 +0.02/-0.008)	20.2 (0.795)				
16 mm	330 ±0.20 (13.000 ±0.008)			(33.23)				
	Variable Dimensions — Millimeters (Inches)							
Tape Size	N Minimum	W_1	W ₂ Maximum	W ₃				
8 mm		8.4 +1.5/-0.0 (0.331 +0.059/-0.0)	14.4 (0.567)					
12 mm	50 (1.969)	12.4 +2.0/-0.0 (0.488 +0.078/-0.0)	18.4 (0.724)	Shall accommodate tape width without interference				
16 mm		16.4 +2.0/-0.0 (0.646 +0.078/-0.0)	22.4 (0.882)					

Figure 6 - Tape Leader & Trailer Dimensions

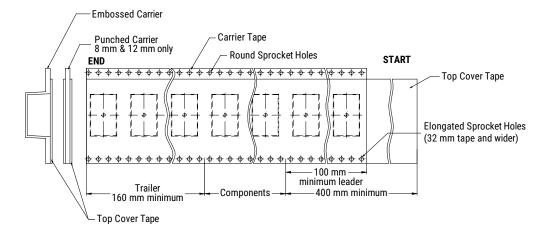
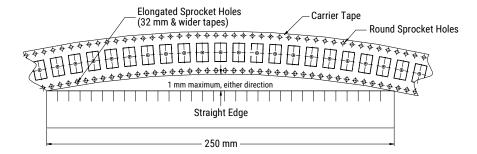



Figure 7 - Maximum Camber

KPS Series, X7R Dielectric, 10VDC-630VDC (Commercial and Automotive Grade) Surface Mount Multilayer Ceramic Chip Capacitors (SMD MLCCs)

KEMET Electronics Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

YAGEO Corporation and its affiliates do not recommend the use of commercial or automotive grade products for high reliability applications or manned space flight.

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicated or that other measures may not be required.

